本文由 简悦 SimpRead 转码, 原文地址 https://mp.weixin.qq.com/s/0RBeWV-any_Rb9JbVPvcfw
点击 “ 程序员内点事 ” 关注,选择 “ 设置星标 ”
坚持学习,好文每日送达!
写在前边
前两天公众号有个粉丝给我留言吐槽最近面试:“四哥,年前我在公司受点委屈一冲动就裸辞了,然后现在疫情严重两个多月还没找到工作,接了几个视频面试也都没下文。好多面试官问完一个问题,紧接着说还会其他解决方法吗?**能干活解决 bug 不就行了吗?那还得会多少种方法?**”面试官应该是对应聘者的回答不太满意,他想听到一个他认为最优的解决方案,其实这无可厚非。同样一个 bug,能用一行代码解决问题的人和用十行代码解决问题的人,你会选哪个入职?显而易见的事情!所以看待问题还是要从多个角度出发,每种方法都有各自的利弊。
一、为什么要用分布式 ID?
在说分布式 ID 的具体实现之前,我们来简单分析一下为什么用分布式 ID?分布式 ID 应该满足哪些特征?
1、什么是分布式 ID?
拿 MySQL 数据库举个栗子:
在我们业务数据量不大的时候,单库单表完全可以支撑现有业务,数据再大一点搞个 MySQL 主从同步读写分离也能对付。
但随着数据日渐增长,主从同步也扛不住了,就需要对数据库进行分库分表,但分库分表后需要有一个唯一 ID 来标识一条数据,数据库的自增 ID 显然不能满足需求;特别一点的如订单、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。那么这个全局唯一ID就叫分布式ID。
2、那么分布式 ID 需要满足那些条件?
全局唯一:必须保证 ID 是全局性唯一的,基本要求
高性能:高可用低延时,ID 生成响应要块,否则反倒会成为业务瓶颈
高可用:100% 的可用性是骗人的,但是也要无限接近于 100% 的可用性
好接入:要秉着拿来即用的设计原则,在系统设计和实现上要尽可能的简单
趋势递增:最好趋势递增,这个要求就得看具体业务场景了,一般不严格要求
二、 分布式 ID 都有哪些生成方式?
今天主要分析一下以下 9 种,分布式 ID 生成器方式以及优缺点:
UUID
数据库自增 ID
数据库多主模式
号段模式
Redis
雪花算法(SnowFlake)
滴滴出品(TinyID)
百度 (Uidgenerator)
美团(Leaf)
那么它们都是如何实现?以及各自有什么优缺点?我们往下看
图片源自网络
以上图片源自网络,如有侵权联系删除
1、基于 UUID
在 Java 的世界里,想要得到一个具有唯一性的 ID,首先被想到可能就是UUID,毕竟它有着全球唯一的特性。那么UUID可以做分布式ID吗?答案是可以的,但是并不推荐!
1 | public static void main(String[] args) { |
UUID的生成简单到只有一行代码,输出结果 c2b8c2b9e46c47e3b30dca3b0d447718,但 UUID 却并不适用于实际的业务需求。像用作订单号UUID这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务主键ID,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作分布式ID。
优点:
- 生成足够简单,本地生成无网络消耗,具有唯一性
缺点:
无序的字符串,不具备趋势自增特性
没有具体的业务含义
长度过长 16 字节 128 位,36 位长度的字符串,存储以及查询对 MySQL 的性能消耗较大,MySQL 官方明确建议主键要尽量越短越好,作为数据库主键
UUID的无序性会导致数据位置频繁变动,严重影响性能。
2、基于数据库自增 ID
基于数据库的auto_increment自增 ID 完全可以充当分布式ID,具体实现:需要一个单独的 MySQL 实例用来生成 ID,建表结构如下:
1 | CREATE DATABASE `SEQ_ID`; |
1 | insert into SEQUENCE_ID(value) VALUES ('values'); |
当我们需要一个 ID 的时候,向表中插入一条记录返回主键ID,但这种方式有一个比较致命的缺点,访问量激增时 MySQL 本身就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!
优点:
- 实现简单,ID 单调自增,数值类型查询速度快
缺点:
- DB 单点存在宕机风险,无法扛住高并发场景
3、基于数据库集群模式
前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个 Mysql 实例都能单独的生产自增 ID。
那这样还会有个问题,两个 MySQL 实例的自增 ID 都从 1 开始,会生成重复的 ID 怎么办?
解决方案:设置起始值和自增步长
MySQL_1 配置:
1 | set @@auto_increment_offset = 1; -- 起始值 |
MySQL_2 配置:
1 | set @@auto_increment_offset = 2; -- 起始值 |
这样两个 MySQL 实例的自增 ID 分别就是:
1、3、5、7、9
2、4、6、8、10
那如果集群后的性能还是扛不住高并发咋办?就要进行 MySQL 扩容增加节点,这是一个比较麻烦的事。
在这里插入图片描述
从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了 ID 生成特性,将自增步长按照机器数量来设置。
增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID 还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改。
优点:
- 解决 DB 单点问题
缺点:
- 不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。
4、基于数据库的号段模式
号段模式是当下分布式 ID 生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增 ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表 1000 个 ID,具体的业务服务将本号段,生成 1~1000 的自增 ID 并加载到内存。表结构如下:
1 | CREATE TABLE id_generator ( |
biz_type :代表不同业务类型
max_id :当前最大的可用 id
step :代表号段的长度
version :是一个乐观锁,每次都更新 version,保证并发时数据的正确性
| id | biz_type | max_id | step | version |
|---|---|---|---|---|
| 1 | 101 | 1000 | 2000 | 0 |
等这批号段 ID 用完,再次向数据库申请新号段,对max_id字段做一次update操作,update max_id= max_id + step,update 成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。
1 | update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX |
由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新,这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。
5、基于 Redis 模式
Redis也同样可以实现,原理就是利用redis的 incr命令实现 ID 的原子性自增。
1 | 127.0.0.1:6379> set seq_id 1 // 初始化自增ID为1 |
用redis实现需要注意一点,要考虑到 redis 持久化的问题。redis有两种持久化方式RDB和AOF
RDB会定时打一个快照进行持久化,假如连续自增但redis没及时持久化,而这会 Redis 挂掉了,重启 Redis 后会出现 ID 重复的情况。AOF会对每条写命令进行持久化,即使Redis挂掉了也不会出现 ID 重复的情况,但由于 incr 命令的特殊性,会导致Redis重启恢复的数据时间过长。
6、基于雪花算法(Snowflake)模式
雪花算法(Snowflake)是 twitter 公司内部分布式项目采用的 ID 生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。
在这里插入图片描述
以上图片源自网络,如有侵权联系删除
Snowflake生成的是 Long 类型的 ID,一个 Long 类型占 8 个字节,每个字节占 8 比特,也就是说一个 Long 类型占 64 个比特。
Snowflake ID 组成结构:正数位(占 1 比特)+ 时间戳(占 41 比特)+ 机器ID(占 5 比特)+ 数据中心(占 5 比特)+ 自增值(占 12 比特),总共 64 比特组成的一个 Long 类型。
第一个 bit 位(1bit):Java 中 long 的最高位是符号位代表正负,正数是 0,负数是 1,一般生成 ID 都为正数,所以默认为 0。
时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的 ID 从更小的值开始;41 位的时间戳可以使用 69 年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69 年
工作机器 id(10bit):也被叫做
workId,这个可以灵活配置,机房或者机器号组合都可以。序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成 4096 个 ID
根据这个算法的逻辑,只需要将这个算法用 Java 语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式 ID,只需保证每个业务应用有自己的工作机器 id 即可,而不需要单独去搭建一个获取分布式 ID 的应用。
Java 版本的Snowflake算法实现:
1 | /** |
7、百度(uid-generator)
uid-generator是由百度技术部开发,项目 GitHub 地址 https://github.com/baidu/uid-generator
uid-generator是基于Snowflake算法实现的,与原始的snowflake算法不同在于,uid-generator支持自定义时间戳、工作机器ID和 序列号 等各部分的位数,而且uid-generator中采用用户自定义workId的生成策略。
uid-generator需要与数据库配合使用,需要新增一个WORKER_NODE表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增 ID 就是该机器的workId数据由 host,port 组成。
对于uid-generator ID 组成结构:
workId,占用了 22 个 bit 位,时间占用了 28 个 bit 位,序列化占用了 13 个 bit 位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,而且同一应用每次重启就会消费一个workId。
参考文献
https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md
8、美团(Leaf)
Leaf由美团开发,github 地址:https://github.com/Meituan-Dianping/Leaf
Leaf同时支持号段模式和snowflake算法模式,可以切换使用。
号段模式
先导入源码 https://github.com/Meituan-Dianping/Leaf ,在建一张表leaf_alloc
1 | DROP TABLE IF EXISTS `leaf_alloc`; |
然后在项目中开启号段模式,配置对应的数据库信息,并关闭snowflake模式
1 | leaf.name=com.sankuai.leaf.opensource.test |
启动leaf-server 模块的 LeafServerApplication项目就跑起来了
号段模式获取分布式自增 ID 的测试 url :http://localhost:8080/api/segment/get/leaf-segment-test
监控号段模式:http://localhost:8080/cache
snowflake 模式
Leaf的 snowflake 模式依赖于ZooKeeper,不同于原始snowflake算法也主要是在workId的生成上,Leaf中workId是基于ZooKeeper的顺序 Id 来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序 Id,相当于一台机器对应一个顺序节点,也就是一个workId。
1 | leaf.snowflake.enable=true |
snowflake 模式获取分布式自增 ID 的测试 url:http://localhost:8080/api/snowflake/get/test
9、滴滴(Tinyid)
Tinyid由滴滴开发,Github 地址:https://github.com/didi/tinyid。
Tinyid是基于号段模式原理实现的与Leaf如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]
在这里插入图片描述
Tinyid提供http和tinyid-client两种方式接入
Http 方式接入
(1)导入 Tinyid 源码:
git clone https://github.com/didi/tinyid.git
(2)创建数据表:
1 | CREATE TABLE `tiny_id_info` ( |
(3)配置数据库:
1 | datasource.tinyid.names=primary |
(4)启动tinyid-server后测试
1 | 获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c' |
Java 客户端方式接入
重复 Http 方式的(2)(3)操作
引入依赖
1 | <dependency> |
配置文件
1 | tinyid.server =localhost:9999 |
test 、tinyid.token是在数据库表中预先插入的数据,test 是具体业务类型,tinyid.token表示可访问的业务类型
1 | // 获取单个分布式自增ID |
总结
本文只是简单介绍一下每种分布式 ID 生成器,旨在给大家一个详细学习的方向,每种生成方式都有它自己的优缺点,具体如何使用还要看具体的业务需求。
今天就说这么多,如果本文对您有一点帮助,希望能得到您一个点赞👍哦
您的认可才是我写作的动力!
☆ END ☆
技术 / 面试 / 吐槽
程序员内点事这都有
长按扫码可关注
在看点这里